Random forest is in many fields of research a common method for data driven predictions. Within economics and prediction of poverty, random forest is rarely used. Comparing out-of-sample predictions in surveys for same year in six countries shows that random forest is often more accurate than current common practice (multiple imputations with variables selected by stepwise and Lasso), suggesting that this method could contribute to better poverty predictions. However, none of the methods consistently provides accurate predictions of poverty over time, highlighting that technical model fitting by any method within a single year is not always, by itself, sufficient for accurate predictions of poverty over time.
Подробная Информация
-
Автор
-
Дата подготовки документа
2016/03/18
-
Тип документа
Рабочий документ в рамках исследования вопросов политики
-
Номер отчета
WPS7612
-
Том
1
-
Total Volume(s)
1
-
Страна
-
Регион
-
Дата раскрытия информации
2016/03/18
-
Disclosure Status
Disclosed
-
Название документа
Is random forest a superior methodology for predicting poverty ? an empirical assessment
-
Ключевые слова
small area estimation;development research group;labor force survey;impact of migration;impact on poverty;department of economics;loss function;rural area;simple average;consumption;selection method;estimation method;machine learning;consumption datum;total sample;confidence interval;regression equation;linear regression;development policy;pattern recognition;agricultural growth;occupational mobility;national poverty;spatial poverty;model prediction;poor household;public policy;data mining;open access;poverty targeting;model fitting;consumption proxy;consumption poverty;
Подробнее
Файлы Для Скачивания
ПОЛНЫЙ ОТЧЕТ
Официальная версия документа (может содержать подписи, и т.д.)
- Официальная версия (PDF)
- TXT*
- Total Downloads** :
- Download Stats