At Loggerheads?

Agricultural Expansion, Poverty Reduction, and Environment in the Tropical Forests

A World Bank Policy Research Report
This report is dedicated to the memory of Ricardo Tarifa, who died tragically in an airplane accident in the Amazon forest on September 29, 2006. Ricardo was returning from Manaus, where he had visited and contributed to several major projects focused on conserving the Brazilian Amazon. Ricardo’s life and work exemplifies, in a very practical way, the theme of this book—seeking ways to conserve the forest and better the lives of its people.

Ricardo loved forests and the people that live in them. He felt at home with the communities on the banks of the Tapajós river and those in the Amazonas floodplains. A Yale-trained forest engineer, he moved among distant worlds: the world of forest dwellers, of academe, and of World Bank offices—but his preference was clear. Ricardo loved to work in the field. He believed in the power of local action to promote change, to seek local solutions to global problems. Ricardo, and the contributions he was yet to make, will be missed.
At Loggerheads?

Agricultural Expansion, Poverty Reduction, and Environment in the Tropical Forests

Kenneth M. Chomitz

with
Piet Buys, Giacomo De Luca, Timothy S. Thomas, and Sheila Wertz-Kanounnikoff

The World Bank
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xv</td>
</tr>
<tr>
<td>Abbreviations and Acronyms</td>
<td>xvii</td>
</tr>
<tr>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>Why Are Tropical Forests a Concern?</td>
<td>1</td>
</tr>
<tr>
<td>This Report’s Aims, Audience, and Scope</td>
<td>2</td>
</tr>
<tr>
<td>This Report’s Arguments and Structure</td>
<td>5</td>
</tr>
<tr>
<td>Setting the Stage: Two Contrasting Cases of Poverty, Wealth, Biodiversity, and Deforestation</td>
<td>19</td>
</tr>
<tr>
<td>Poverty, Biodiversity Loss, and Deforestation in Madagascar</td>
<td>19</td>
</tr>
<tr>
<td>Wealth, Biodiversity Loss, and Deforestation in Brazil’s Cerrado</td>
<td>21</td>
</tr>
<tr>
<td>Part I: The Where and Why of Deforestation and Forest Poverty</td>
<td>25</td>
</tr>
<tr>
<td>1. Forests Differ</td>
<td>27</td>
</tr>
<tr>
<td>Three Stylized Forest Types</td>
<td>27</td>
</tr>
<tr>
<td>From Stylized Types to Mapped Domains</td>
<td>31</td>
</tr>
<tr>
<td>The Uneven Distribution of Forest Populations</td>
<td>37</td>
</tr>
<tr>
<td>Trends in Forest Change</td>
<td>40</td>
</tr>
<tr>
<td>Threatened Species—Concentrated in Less-remote Areas and Mosaiclands</td>
<td>47</td>
</tr>
<tr>
<td>Summary</td>
<td>50</td>
</tr>
</tbody>
</table>
2. Incentives and Constraints Shape Forest Outcomes 53
 The View from the Forest Plot: Comparing the Returns to Forestry and Agriculture 54
 How Do Agroclimate, Prices, Technology, Tenure, and Other Factors Affect Deforestation and Income? 60
 Forest Trajectories: Roads, Markets, and Rights Shape Outcomes for Environment and Income 71
 Summary 78

3. Poverty in Forests Stems from Remoteness and Lack of Rights 81
 Poverty Rates and Poverty Density: Two Ways of Viewing Poor Areas 82
 Remote Forests—High Poverty Rates, Low Poverty Densities 84
 Incomes of Forest Dwellers Depend on Rights and Access to Forestlands 88
 Forests, Poverty, and Deforestation: Ambiguous Relationships 93
 Summary 104

4. Deforestation Imposes Geographically Varied Environmental Damages 109
 Biodiversity Loss—A Local and Global Concern 110
 How Does Deforestation Affect Water, Air, and Weather? 115
 Deforestation Spurs Climate Change 125
 Forest Loss—Sometimes Irreversible 129
 Summary 131

Part II: Institutional and Policy Responses 135

5. Improving Forest Governance 137
 Who Should Have Rights over Forests? Which Rights? 137
 How Should Society Balance Environmental Services against Production of Food, Fiber, and Wood? 137
 Balancing Interests while Enforcing Commitments 139
 Catalytic Innovations in Institutions and Technology 140
 Summary 150
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Local and National Policies: Framing Rights</td>
<td></td>
</tr>
<tr>
<td>and Incentives for Forest Management</td>
<td>153</td>
</tr>
<tr>
<td>The Challenge of Forest Conflict</td>
<td>154</td>
</tr>
<tr>
<td>Forest Rights and Restrictions—A Range of Possibilities</td>
<td>155</td>
</tr>
<tr>
<td>Public Management of Forests: Protected Areas and Concessions</td>
<td>161</td>
</tr>
<tr>
<td>Community Control of Forests—Balancing Rights and Responsibilities</td>
<td>171</td>
</tr>
<tr>
<td>Private Property—Especially in Mosaiclands</td>
<td>178</td>
</tr>
<tr>
<td>Other Development Policies with Forest Spillovers</td>
<td>188</td>
</tr>
<tr>
<td>Summary</td>
<td>193</td>
</tr>
<tr>
<td>7. Mobilizing Global Interests for Forest Conservation</td>
<td></td>
</tr>
<tr>
<td>Forest Carbon Finance: An Ungrasped Opportunity</td>
<td>195</td>
</tr>
<tr>
<td>Why Carbon Finance Makes Sense for Climate</td>
<td>196</td>
</tr>
<tr>
<td>Why Carbon Finance Makes Sense for Forests and Rural Development</td>
<td>196</td>
</tr>
<tr>
<td>Financing Avoided Deforestation: Problems and Solutions</td>
<td>197</td>
</tr>
<tr>
<td>Implementing Incentives for Avoided Deforestation</td>
<td>203</td>
</tr>
<tr>
<td>Related Opportunities for Biodiversity Conservation</td>
<td>209</td>
</tr>
<tr>
<td>Summary</td>
<td>209</td>
</tr>
<tr>
<td>8. Conclusions and Recommendations</td>
<td></td>
</tr>
<tr>
<td>International Level</td>
<td>211</td>
</tr>
<tr>
<td>National Level</td>
<td>213</td>
</tr>
<tr>
<td>Accelerating the Forest Transition</td>
<td>215</td>
</tr>
<tr>
<td>Accelerating the Forest Transition</td>
<td>218</td>
</tr>
<tr>
<td>Appendix A: Tables</td>
<td></td>
</tr>
<tr>
<td>A.1 Findings of Studies Assessing How Road Proximity Affects Deforestation</td>
<td>220</td>
</tr>
<tr>
<td>A.2 Findings of Studies on How Roads Affect Development</td>
<td>230</td>
</tr>
<tr>
<td>A.3 Forest Management and Tenure</td>
<td>236</td>
</tr>
<tr>
<td>Appendix B: Data and Methods</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>240</td>
</tr>
<tr>
<td>Index</td>
<td>277</td>
</tr>
</tbody>
</table>
Boxes

1. Unreliable Generalizations about Deforestation and Poverty 3
2. The World Bank’s Forest Strategy 5
3. This Report’s Recommendations 17
1.1 This Report’s Geographic Scope 28
1.2 Mapping the Domains and Tallying Their Populations 37
2.1 The Forest Transition 77
4.1 Forest Fragmentation Can Trigger Local Ecological Collapse 114
4.2 Trees and Carbon: Lessons from Biology for Forest Policy 127
6.1 Cameroon: A Nexus of Institutional Reform 168
6.2 Self-assembling Biodiversity Corridors: Reconciling Voluntary Participation Decisions with Landscape-level Goals 186
8.1 This Report’s Recommendations 212

Figures

1. Structure of This Report’s Arguments 6
1.1 Forests Vary Greatly in Population Density, 2000 41
1.2 Africa and Latin America Have Higher Degradation on Better Soils, 1990–2000 46
1.3 The Incidence of Threatened Amphibian Species Is Much Higher in Nonremote Areas 48
1.4 Imminent Extinction Sites Are Concentrated Near Cities 49
2.1 Deforestation in Brazilian Amazônia Is Shaped by Rainfall and Farmgate Prices of Beef, 2001–03 63
2.2 A Stylized Model of How Land Use Changes with Remoteness 72
2.3 As Remoteness Increases, Mosaiclands Are Displaced by Forests, 2000 73
3.1 Extreme Rural Poverty Increases with Travel Time to Managua 85
3.2 Rural Population Density Decreases with Travel Time to Managua 86
3.3 Forest Cover Increases with Travel Time to Managua 86
3.4 Most Deforestation in Brazilian Amazônia Reflects Large- and Medium-scale Clearing, August 2000 to July 2003 95
Tables

1 Alternative Bundles of Forest Rights
1.2 Stylized Forest Types Have Equivalents in Mapped Domains
1.3 Forest Populations and Areas Vary by Continent, Biome, Domain, and Remoteness, 2000
1.4 Estimated Annual Deforestation Is Highest in Latin America and Asia, 1990–97
1.5 During the 1990s Savannas and Asian Forests Experienced Considerable Degradation
2.1 Land Values in Forested Areas Vary Enormously
2.2 Predictions of How Changes in Local Variables Will Affect the Environment and Welfare
2.3 Five Trajectories of Forest Cover, Income, and Population
3.1 How Does Increasing Remoteness from Markets Affect Poverty and the Environment?
4.1 Externalities of Deforestation Vary by Location of Source and Impact
6.1 Examples of Forest Ownership and Use Restrictions
6.2 Integrated Conservation-Development Project Interventions Have a Mixed Record
6.3 Latin American Countries Impose Varying Restrictions on Deforestation of Private Property
7.1 Policies to Reward Avoided Deforestation Can Have Synergistic Effects
A.1 Findings of Studies Assessing How Road Proximity Affects Deforestation
A.2 Findings of Studies on How Roads Affect Development
A.3 Forest Management and Tenure
B.1 GLC2000 Land Cover Categories
Foreword

Three billion people—almost half of humanity—live in rural areas of the developing world, and 1.5 billion of them on less than $2 a day. Forests are important resources for the rural poor, with over 800 million people living in forests and woodlands in the tropics alone. However, global deforestation continues at an alarming rate, with annual losses the size of Portugal, as forests are cleared for agriculture or harvested unsustainably. In addition to the implications for poor populations’ welfare, forest destruction results in the loss of globally irreplaceable biodiversity and contributes to global climate change, which threatens both the rich and poor.

Forests are integral to the Bank’s mission of poverty reduction and commitment to mitigating global environmental problems. The Bank’s forest sector strategy is founded on three mutually reinforcing goals of poverty reduction, economic development, and conservation of forest environmental values. While the Bank is committed to engagement in both forest-rich and forest-poor countries in all forest types, this report focuses on the causes, consequences, and connections of deforestation and forest poverty in the tropical world.

Specifically, the report addresses the potential dilemma of trade-offs between poverty reduction and environmental protection. Deforestation causes environmental damage, but it also increases the supply of farmland and generates rural income and employment, sometimes sustainable and sometimes not. Overall, the report suggests that poverty alleviation and environment are not inherently at loggerheads, nor are they automatically aligned. Outcomes depend on the policies adopted and specific conditions on the ground.

The report proposes a typology for three kinds of forests, which face differential kinds of environmental pressure and offer disparate opportunities for growth and poverty alleviation, to appraise policy
options. It identifies ample opportunities for “win-win” policies. In particular, anything that boosts labor demand outside agriculture will tend to reduce both poverty and deforestation. Additionally, promotion of some kinds of agroforestry can help to improve the ecological functions of degraded forests while boosting farm output and employment.

Resolving many forest issues requires mediation between stakeholders with conflicting claims on forests. Sorting out and defending land and forest tenure is one key policy challenge. Millions of people live with limited or insecure rights to trees and land, unable to tap forest resources and without any motivation to preserve them. Another challenge is recognizing the environmental externalities associated with forest management. Communities at all levels, from local watersheds to the entire planet, need to find ways of rewarding forest owners and managers whose actions benefit others.

These challenges are difficult even for nations with relatively high capacities for governance, yet many tropical-forested nations rank low on governance measures. Nonetheless, the report is cautiously optimistic that these challenges can be tackled. It points to a number of innovations that could tip the balance toward improved governance and thus to deployment of better policies. The rapidly decreasing cost of information is a critical factor in the emergence of these innovations, as it becomes cheaper and easier to monitor forest conditions, communicate with forest populations, and scrutinize the actions of landholders and of government agencies. Together with new institutional mechanisms such as independent forests observers and third-party certification, these innovations can boost transparency in the sector and restrain environmentally and socially destructive resource grabs.

Global finance for forests could accelerate these institutional changes while directly supporting conservation actions and livelihood improvements. While noting the global demand for biodiversity conservation, the report focuses particular attention on the potential opportunities offered by global carbon finance. This is a topic of current and increasingly intense international discussion. About 20 percent of global carbon dioxide emissions come from tropical deforestation. The costs of abating some of these emissions appear low in comparison to other options. International finance for carbon services could defray the direct opportunity costs of forest conservation while also fostering sustainable agricultural and
silvicultural development, which would relieve pressures on protected forests. This is a long-term vision, but it could spur near-term institutional strengthening that would benefit forests and their inhabitants.

The report offers a systematic framework for thinking about how to integrate forest management with rural development in a sustainable way. We hope that this report will help to shape the debate on how best to manage the rural landscape for local and global benefits.

François Bourguignon
Senior Vice President and Chief Economist
World Bank

Katherine Sierra
Vice President, Sustainable Development Network
World Bank
Acknowledgments

This report was written by Kenneth M. Chomitz (Senior Advisor, Independent Evaluation Group) while with the Development Research Group (DECRG), under the general supervision of Zmarak Shalizi (Senior Research Manager) and L. Alan Winters (Director, DECRG). Chomitz was assisted by a research team made up of Piet Buys, Giacomo De Luca, Timothy S. Thomas, and Sheila Wertz-Kanounnikoff. CIFOR produced two background papers: one by Arild Angelsen, and another by William Sunderlin, Sonya Dewi, and Atie Puntodewo. Dirk Kloss also wrote a background paper. Klas Sander contributed material on Madagascar. The team is grateful for guidance and feedback from an external advisory board consisting of Alain de Janvry, David Kaimowitz, José Sarukhan, and Sara Scherr. Thanks go also to Yasmin d’Souza and Julie Terrell for administrative support; to Paul Holtz for editing; to Susan Graham for managing the production of a particularly complex manuscript; to Nancy Lammers, Stephen McGroarty, and colleagues in the Office of the Publisher; and to Kavita Watsa and Maya Brahmam for assistance in dissemination.

The team thanks management and colleagues from the World Bank’s Forest Team, Environment Department, and Agriculture and Rural Development Departments for support and advice. The team benefited greatly from comments, discussions with, and help from many people, including Keith Alger, Eugenio Arima, Philippe Ambrosi, Deborah Balk, Garo Batmanian, Diji Chandrasekharan Behr, Jill Blockhus, Anne Branthomme, Mario Bocucci, Sampurno Brujinzeel, Malcolm Childress, Chona Cruz, Richard Damania, Robert Davis, Uwe Deichmann, Laurent Debroux, Gerhard Dieterle, Giovanna Dore, Ellen Douglas, Gershon Feder, Erick Fernandes, Douglas J. Graham, Theodore Greenberg, Armando Guzman, Mike Hoffman, Peter Holmgren, Miroslav Honzák, William Hyde, Nalin Kishor, Somik Lall, Nadine Laporte, Franck Lecocq, Daniel Leder-

Support from the Knowledge for Change Program, the Trust Fund for Environmentally and Socially Sustainable Development, and the German Consultant Trust Fund is gratefully acknowledged.
Abbreviations and Acronyms

ASB Alternatives to Slash and Burn Project
CIFOR Center for International Forestry Research
CO$_2$ carbon dioxide
CONABIO Mexico’s National Biodiversity Commission
EMBRAPA Brazilian Agricultural Research Corporation
ETS Emissions Trading Scheme
EU European Union
FAO UN Food and Agriculture Organization
FEMA [state environmental agency of Mato Grosso]
FRA Forest Resources Assessment
FRA-RSS Forest Resources Assessment Remote Sensing Survey
FSC Forest Stewardship Council
GEF Global Environment Facility
GHGs greenhouse gases
GPS Global Positioning System
ICDPs integrated conservation-development projects
IMF International Monetary Fund
INPE Brazilian National Institute of Space Research
ITTO International Tropical Timber Organization
IUCN The World Conservation Union
LSMS Living Standards Measurement Survey
NGOs nongovernmental organizations
NPV net present value
RISEMP Regional Integrated Silvopastoral Ecosystem Management Project
RL reference level
SLAPR Rural Property Environmental Licensing System (Mato Grosso)
TREES Tropical Ecosystem Environment Observation by Satellite
WWF Worldwide Fund for Nature/World Wildlife Fund

100 ha = 1 km2
1 ton carbon is equivalent to 3.67 tons CO$_2$
Juan Pablo Moreiras / Fauna & Flora International / Comisión Centroamericana de Ambiente y Desarrollo photo archive.