5. PRO-EQUITY APPROACHES TO MONITORING AND EVALUATION:
GENDER, MARGINALIZED GROUPS AND SPECIAL NEEDS POPULATIONS

DANIEL A. WAGNER

Executive Summary

5.1 PRO-EQUITY APPROACHES

Long before the term digital divide became a common way to describe gaps between the rich and poor in access and use of ICT, most policy makers, researchers and practitioners could at least agree on one thing: Reaching the poorest of the poor was going to be very difficult challenge. Even reaching the so-called ordinary poor (that is, men with some secondary schooling, living in predominately urban areas) would entail challenges of electrical power, telecommunications connectivity, human resources infrastructure, and the like.

Reaching the poorest of the poor (that is, illiterate women with little or no schooling, living in predominantly rural areas, and possibly speaking minority languages) would be considerably more difficult. The goals of EFA and MDG are very clear about the need to promote equity by gender (women and girls), special educational needs (SEN), and among “marginalized” populations (such as illustrate persons, ethno-linguistic minorities, refugees, and so forth). This chapter attempts to describe where M&E might be able to play a role in supporting pro-equity approaches to ICT for education (ICT4E).

Who are the ‘poor’ in the world today? Clearly, poverty is a relative term—the poor in New York would have resources quite different from the poor in urban Johannesburg or rural Senegal. Yet using UN data, there is general consensus, as stated in the 2004 World Bank Annual Report, that on average, about 10-20 percent of people in OECD countries are poor, while this number climbs to a range of 40-60 percent in the bottom third of LDCs. In poor LDCs, the characteristics of poverty include an average GNP per capita of less than 1-2 U.S. dollars per day, high illiteracy levels (including either illiteracy or functional illiteracy of 40-50 percent of the overall population), and relatively low social status (as related to gender, ethnicity, language, and geographic location, and so on). It is variously estimated that only a tiny fraction (less than 5 percent) of people in OECD countries are poor, while this number climbs to a range of 40-60 percent in the bottom third of LDCs. In poor LDCs, the characteristics of poverty include an average GNP per capita of less than 1-2 U.S. dollars per day, high illiteracy levels (including either illiteracy or functional illiteracy of 40-50 percent of the overall population), and relatively low social status (as related to gender, ethnicity, language, and geographic location, and so on). It is variously estimated that only a tiny fraction (less than 5 percent) of...
global ICT investments focus on the poor as defined above. Indeed, when considering the life opportunities of the poorest populations, direct investments in ICT have clearly been more rheotorical than real. Yet such work is crucial if the MDGs of universal basic education and literacy are to be achieved.

What is the overall scale of the target population that is covered within the MDG-ICT framework above? Groups comprised of women and those speaking minority-languages may be overlapping, but clearly contain a large majority of those on the wrong side of the digital divide. Further, there are over 100 million primary school-aged children out of school, and about one billion adult illiterates, the majority of whom reside in the poorest countries of South Asia and Africa.1 Even these large numbers are likely to be a serious under-estimation of literacy needs in the digital age. Indeed, if a larger set of skill competencies (reading, writing, math, ICT literacy) were included, along with the limited efficiency of adult literacy and "second chance" education programs, and the very low quality of many poor rural schools in developing countries, it would probably be more accurate to say that those in need of improved basic skills (required in order to effectively use ICT) today represent between 2-3 billion individuals (Wagner & Kozma, 2005). Of these individuals, we might estimate that at least half are among the poorest of the poor, as they will undoubtedly be over-represented by ethno-linguistic groups for whom ICT access in the international languages of the world (i.e., English, French, Spanish) is quite limited.

This raises a key question: Are the methods and indicators most commonly used in the monitoring and evaluation of ICT in education initiatives biased in any way that will work against the narrowing of gaps and towards the growth of equity in ICT for education? Put another way: Would the availability of equity-sensitive M&E indicators work towards promoting greater inclusion of populations within the MDG-ICT framework?

Consider, for example, the Bridges to the Future Initiative project undertaken in India. In this project, a specific focus was on how to reach the most challenging poor populations, but within fiscal constraints that meant that an ICT infrastructure had to pre-exist in order to reduce expenditures. Within this important constraint, the project had to determine the best way to achieve MDG education goals, and measure the impact of multimedia instructional material on youth and young adults (see Box 5.1).

Many projects in the ICT sector claim to be ‘bridging’ the digital divide. But what divide are they bridging? Is it between the rural and urban? Between boys/men and girls/women? Between the well-off and the less-well-off? In many leading studies, including most of those referenced in this handbook, we have relatively little idea of the demographics around equity issues. We may be helping the “poor,” but are we doing so at the expense of other poor people? While investment in a given ICT4E initiative may be effective and desirable for its target groups, to what extent does it satisfy the priority in the MDGs to reach the most disadvantaged? If a student is in high school in the lowest third of GNP countries, he/she is likely to already be in the top 10-20 percent of the socio-economic structure. Will helping this individual (no doubt a useful goal in and of itself) help achieve greater equity in the country concerned? In the following sections, we describe a number of key MDG areas that will need to be the subject of considerably greater investment if the MDG targets are to be met.

5.2 GENDER

Since the introduction of personal computers in developed countries in the early 1980’s, the ‘convention wisdom’ has been that introducing ICTs in schools would favor males. Yet, as we have seen in numerous examples across the world, there are many cases where girls’ and women’s motivation and learning in ICT for education programs is equal to or greater than that of boys and men. The root causes of the initial ‘digital divide’ are complex and are not simply economic.

Groups comprised of women and those speaking minority-languages may be overlapping, but clearly contain a large majority of those on the wrong side of the digital divide. Further, there are over 100 million primary school-aged children out of school, and about one billion adult illiterates, the majority of whom reside in the poorest countries of South Asia and Africa.1 Even these large numbers are likely to be a serious under-estimation of literacy needs in the digital age. Indeed, if a larger set of skill competencies (reading, writing, math, ICT literacy) were included, along with the limited efficiency of adult literacy and "second chance" education programs, and the very low quality of many poor rural schools in developing countries, it would probably be more accurate to say that those in need of improved basic skills (required in order to effectively use ICT) today represent between 2-3 billion individuals (Wagner & Kozma, 2005). Of these individuals, we might estimate that at least half are among the poorest of the poor, as they will undoubtedly be over-represented by ethno-linguistic groups for whom ICT access in the international languages of the world (i.e., English, French, Spanish) is quite limited.

This raises a key question: Are the methods and indicators most commonly used in the monitoring and evaluation of ICT in education initiatives biased in any way that will work against the narrowing of gaps and towards the growth of equity in ICT for education? Put another way: Would the availability of equity-sensitive M&E indicators work towards promoting greater inclusion of populations within the MDG-ICT framework?

Consider, for example, the Bridges to the Future Initiative project undertaken in India. In this project, a specific focus was on how to reach the most challenging poor populations, but within fiscal constraints that meant that an ICT infrastructure had to pre-exist in order to reduce expenditures. Within this important constraint, the project had to determine the best way to achieve MDG education goals, and measure the impact of multimedia instructional material on youth and young adults (see Box 5.1).

Many projects in the ICT sector claim to be ‘bridging’ the digital divide. But what divide are they bridging? Is it between the rural and urban? Between boys/men and girls/women? Between the well-off and the less-well-off? In many leading studies, including most of those referenced in this handbook, we have relatively little idea of the demographics around equity issues. We may be helping the “poor,” but are we doing so at the expense of other poor people? While investment in a given ICT4E initiative may be effective and desirable for its target groups, to what extent does it satisfy the priority in the MDGs to reach the most disadvantaged? If a student is in high school in the lowest third of GNP countries, he/she is likely to already be in the top 10-20 percent of the socio-economic structure. Will helping this individual (no doubt a useful goal in and of itself) help achieve greater equity in the country concerned? In the following sections, we describe a number of key MDG areas that will need to be the subject of considerably greater investment if the MDG targets are to be met.

5.2 GENDER

Since the introduction of personal computers in developed countries in the early 1980’s, the ‘convention wisdom’ has been that introducing ICTs in schools would favor males. Yet, as we have seen in numerous examples across the world, there are many cases where girls’ and women’s motivation and learning in ICT for education programs is equal to or greater than that of boys and men. The root causes of the initial ‘digital divide’ are complex and are not simply economic.
gender divide (conscious or unconscious) against females have generally been perceived (by policy makers) to relate to issues such as lack of a safe place of access, limited literacy, and little in the way of useful outcomes. Another interpretation, of course, is that men’s access to economic resources in the ‘external’ (outside of home) environment simply put them in greater proximity to technology access. We will unlikely know the definitive set of causes, but we do know the results. In most countries today, especially outside of the OECD, women’s access to ICT inside an educational system lags significantly behind that of men’s. (see Table 5.1).

As with most areas of development, such gender biases are clearly counterproductive for all social indices. In the area of ICT for Development (ICT4D), we now have many examples of women (and girls) being at the forefront of the social and economic uses of new ICT. In one of the best-known examples of the use of microcredit for women, Grameen Bank in Bangladesh made loans to women, even poor and illiterate women, for the creation of small mobile phone businesses. The results were dramatic—not only were the women more reliable then men in paying back the loans, but they also made use of their local social networks to run highly successful enterprises even in poor, rural areas. There are many such examples today that show that women in developing countries recognize the empowering dimensions and economic returns of ICT.

When considering gender within the M&E area, it is increasingly the case that gender is a variable of interest. Today, gender is increasingly taken note of by program implementers, and the importance of gender in development processes overall now assures more than ever before, that ICT programs will be ‘gendered’. See Box 5.2 for some examples of who to improve a gender-sensitive approach to ICT4E.

BOX 5.1: India: Focus on ICT and the poor in the Bridges to the Future Initiative

The Bridges to the Future Initiative (BFI) in India provides multimedia, local language resources on literacy and vocational training for out-ofschool youth and adults—about 50 percent of the population in poor parts of India that never had access to and/or completion of quality primary or secondary schooling. The BFI is a four-year program to return to complete their primary schooling. The BFI in India (along with a companion project in South Africa) was designed to demonstrate that innovative solutions can and should be developed for the most challenging situations.

Adapted from: Wagner and colleagues

As with most areas of development, such gender biases are clearly counterproductive for all social indices. In the area of ICT for Development (ICT4D), we now have many examples of women and girls being at the forefront of the social and economic uses of new ICT. In one of the best-known examples of the use of microcredit for women, Grameen Bank in Bangladesh made loans to women, even poor and illiterate women, for the creation of small mobile phone businesses. The results were dramatic—not only were the women more reliable then men in paying back the loans, but they also made use of their local social networks to run highly successful enterprises even in poor, rural areas. There are many such examples today that show that women in developing countries recognize the empowering dimensions and economic returns of ICT.

When considering gender within the M&E area, it is increasingly the case that gender is a variable of interest. Today, gender is increasingly taken note of by program implementers, and the importance of gender in development processes overall now assures more than ever before, that ICT programs will be ‘gendered’. See Box 5.2 for some examples of who to improve a gender-sensitive approach to ICT4E.
Monitoring and Evaluation of ICT in Education Projects

directly, much as has the issue of gender discrimination. As yet, however, most technology projects have, for

socio-economic and cultural-linguistic periphery of a national population. Beyond issues of gender and age

As noted earlier, the most disadvantaged groups in all societies tend to be those “on the margin”—on the

Being a member of a marginalized, usually an

being a historically deprived (usually rural) geographical region.

Have a history of little or no education, and likely to be illiterate or low-literate;

Belong to an indigenous people or special caste or race that has a pattern of historical social discrimina-

As noted earlier, the most disadvantaged groups in all societies tend to be those “on the margin”—on the

Being a member of a marginalized, usually an

As noted earlier, the most disadvantaged groups in all societies tend to be those “on the margin”—on the

Women as % of total population

Internet users as % of total population

Female internet users per capita

Country 2000 ’000s ‘000s of total rate (US$) 1/174

<table>
<thead>
<tr>
<th>Country</th>
<th>Women as % of total population</th>
<th>Total number of women Internet users in ’000s</th>
<th>Total number of Internet users in ’000s</th>
<th>Internet users as % of total population</th>
<th>Female internet users as % of total population</th>
<th>Female internet users per capita</th>
<th>GDP Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>51.1</td>
<td>83,479</td>
<td>170,280</td>
<td>60.0</td>
<td>283,800</td>
<td>53.1</td>
<td>99.0</td>
</tr>
<tr>
<td>Philippines</td>
<td>51.0</td>
<td>76.3</td>
<td>150.6</td>
<td>0.6</td>
<td>77,726</td>
<td>63.1</td>
<td>94.3</td>
</tr>
<tr>
<td>South Africa</td>
<td>51.0</td>
<td>463.6</td>
<td>1,266.2</td>
<td>2.2</td>
<td>42,835</td>
<td>66.7</td>
<td>83.2</td>
</tr>
<tr>
<td>Brazil</td>
<td>43.0</td>
<td>1,073</td>
<td>2,500</td>
<td>2.1</td>
<td>169,807</td>
<td>63.3</td>
<td>83.9</td>
</tr>
<tr>
<td>Croatia</td>
<td>42.0</td>
<td>63</td>
<td>150.3</td>
<td>6.3</td>
<td>4,672</td>
<td>n/a</td>
<td>96.4</td>
</tr>
<tr>
<td>Mexico</td>
<td>42.0</td>
<td>567</td>
<td>1,350.2</td>
<td>2.5</td>
<td>98,553</td>
<td>65.2</td>
<td>87.9</td>
</tr>
<tr>
<td>Estonia</td>
<td>38.0</td>
<td>57</td>
<td>150.1</td>
<td>14.1</td>
<td>1,421</td>
<td>66.8</td>
<td>99.0</td>
</tr>
<tr>
<td>Russia</td>
<td>38.0</td>
<td>4,560</td>
<td>12,000.1</td>
<td>1.8</td>
<td>186,861</td>
<td>n/a</td>
<td>98.8</td>
</tr>
<tr>
<td>Zambia</td>
<td>37.5</td>
<td>1.13</td>
<td>3.0</td>
<td>0.2</td>
<td>9,461</td>
<td>31.9</td>
<td>67.5</td>
</tr>
<tr>
<td>Uganda</td>
<td>31.5</td>
<td>4.73</td>
<td>15.0</td>
<td>0.1</td>
<td>22,167</td>
<td>n/a</td>
<td>35.0</td>
</tr>
<tr>
<td>China</td>
<td>30.4</td>
<td>6,840</td>
<td>22,500.7</td>
<td>0.7</td>
<td>1,265,530</td>
<td>45.1</td>
<td>74.5</td>
</tr>
<tr>
<td>India</td>
<td>23.0</td>
<td>115</td>
<td>500.0</td>
<td>0.2</td>
<td>983,377</td>
<td>20.5</td>
<td>39.4</td>
</tr>
<tr>
<td>Poland</td>
<td>18.7</td>
<td>295.6</td>
<td>1,581.4</td>
<td>5.4</td>
<td>38,607</td>
<td>41.2</td>
<td>99.0</td>
</tr>
<tr>
<td>Belarus</td>
<td>17.5</td>
<td>14</td>
<td>80.0</td>
<td>0.1</td>
<td>6,667</td>
<td>38.4</td>
<td>98.5</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>13.9</td>
<td>0.83</td>
<td>6.0</td>
<td>0.1</td>
<td>58,390</td>
<td>n/a</td>
<td>98.2</td>
</tr>
<tr>
<td>Slovakia</td>
<td>12.0</td>
<td>60</td>
<td>500.0</td>
<td>13.0</td>
<td>3,600</td>
<td>97.9</td>
<td>99.0</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>12.0</td>
<td>68</td>
<td>400.0</td>
<td>6.8</td>
<td>10,286</td>
<td>54.1</td>
<td>99.0</td>
</tr>
<tr>
<td>Senegal</td>
<td>12.0</td>
<td>90</td>
<td>750.0</td>
<td>3.3</td>
<td>9,723</td>
<td>n/a</td>
<td>94.9</td>
</tr>
<tr>
<td>Lithuania</td>
<td>10.0</td>
<td>70</td>
<td>70.0</td>
<td>2.9</td>
<td>3,600</td>
<td>67.5</td>
<td>99.0</td>
</tr>
<tr>
<td>Jordan</td>
<td>6.0</td>
<td>37</td>
<td>608.8</td>
<td>1.8</td>
<td>4,635</td>
<td>n/a</td>
<td>81.8</td>
</tr>
<tr>
<td>Colombia</td>
<td>n/a</td>
<td>n/a</td>
<td>350.0</td>
<td>0.0</td>
<td>38,581</td>
<td>45.6</td>
<td>90.0</td>
</tr>
<tr>
<td>Peru</td>
<td>n/a</td>
<td>n/a</td>
<td>200.0</td>
<td>1.5</td>
<td>26,111</td>
<td>39.4</td>
<td>83.7</td>
</tr>
<tr>
<td>Turkey</td>
<td>n/a</td>
<td>n/a</td>
<td>450.0</td>
<td>2.3</td>
<td>66,567</td>
<td>33.7</td>
<td>72.9</td>
</tr>
<tr>
<td>Thailand</td>
<td>n/a</td>
<td>n/a</td>
<td>200.0</td>
<td>1.3</td>
<td>60,037</td>
<td>54.5</td>
<td>92.8</td>
</tr>
<tr>
<td>Indonesia</td>
<td>n/a</td>
<td>n/a</td>
<td>300.0</td>
<td>0.2</td>
<td>1,214,902</td>
<td>48.8</td>
<td>79.5</td>
</tr>
<tr>
<td>Pakistan</td>
<td>n/a</td>
<td>n/a</td>
<td>61.9</td>
<td>0.1</td>
<td>135,135</td>
<td>21.0</td>
<td>25.6</td>
</tr>
<tr>
<td>Vietnam</td>
<td>n/a</td>
<td>n/a</td>
<td>10.0</td>
<td>0.1</td>
<td>76,236</td>
<td>27.6</td>
<td>89.0</td>
</tr>
</tbody>
</table>
a number of (often political) reasons, chosen to focus on ‘majority’ digital divide issues, rather than ‘minority’ or marginalized group issues. As with gender, M&E can play an important role in focusing attention on the problem, as well as providing a better targeting of implementation processes.

Language is an exceptionally important marginalizing factor in the digital age. One reason for this is that the Internet itself is not language-neutral. Recent research shows that English is more present on the World Wide Web (approximately 52 percent in October 2005) than any other language, and is about at parity with the next nine most prominent languages combined.8 Interestingly, the dominance of English has dropped somewhat from an even greater dominance only a couple of years earlier (65 percent in mid-2001). No other language seems to rival the English total. Even though Chinese (at 13 percent of the world total) is rapidly growing, the role of English as a preferred global second language of communication will almost certainly guarantee its global dominance for years to come. Of course, there are major changes taking place on the Internet today, and there is serious disagreement as to the breadth and depths of availability and use of digital information. There are more languages—outside of the top ten—in use every year. Nonetheless, most research, as of 2005, shows that the top ten languages9 dominate 80 percent of internet use today, leaving those who have not mastered one of these languages as a first or second language in the margins of global information.

While similar data are not available for language-based instructional software production, a substantial dominance is likely to be found for English today, at the expense of other international languages, and major regional languages (e.g., Hindi, Swahili). Further, local minority/indigenous languages (e.g., Telugu in India, with 50 million speakers; or Mayan in Mexico, with 1.2 million speakers) receive relatively little digital attention at all. This should also be noted that most of the monolingual speakers of indigenous languages are female, which adds an additional burden on the obstacles that women face in ICT4E projects.

Illiteracy and low-literacy, when combined with ethno-linguistic status is a further marginalizing factor. UNESCO11 has estimated that there are nearly 862 million illiterates in the world aged 15 and above. One could estimate that at least 80-90 percent of this illiterate population is from the types of marginalized groups detailed above. Of this total population, we know that nearly 60 percent is comprised of women, most of whom are from the poorest countries or regions in the world. Overall, developing countries have increased literacy rates by 6.6 percent between 1990 and 2000. However, such increases in official literacy rates often have not kept pace with population growth (especially in South Asia and Sub-Saharan Africa) with the actual number of illiterate citizens having increased during the same period of time. As a consequence, illiteracy and low-literacy are fairly direct indicators of those who are marginalized in society; furthermore such skills are central to ICT4E success due to their role in serving as a base for technological skill proficiency.
5.4 SPECIAL EDUCATIONAL NEEDS

New technologies have long been seen in industrialized countries as an exceptional way to reach out to individuals who are especially challenged with physical and psychological handicaps. Indeed, when resources can be deployed, new ICTs can be seen in a host of efforts to aid those with sight, hearing, and other physiological handicaps. Thus, “special educational needs” (SEN; a subset of the broader domain of special needs) usually refers to the sub-domain of ICT4E where two inter-related issues may arise: (1) Does the SEN learner have particular problems (such as visual or hearing impairments, or learning disabilities, and so on) that make the ordinary person–technology device (PC, PDA, other) interaction difficult (e.g., difficulty in seeing print on a screen)? (2) are there particular technology devices (assistive technologies) that are or can be especially tailored for SEN learners such that they are responsive to the particular needs of the learner (e.g., voice recognition technologies for the blind). While there is a long history of use of such assistive technologies for learning, mainly in industrialized countries (such as described in Box 6.3), due to resource constraints, this area has only begun to receive significant attention in developing countries.

In recent years, AT has been used increasingly in developing countries as well. Popular tools such as JAWS, a screen-reader software for the blind or visually impaired offers access to a wide variety of information, education and job-related applications (see http://www.synapseedaptive.com/). Two case examples are provided below that provide a sense of the types of AT in use, and the type of M&E that has been employed. In the first example, in Morocco (Box 5.4), visually impaired university students were provided with AT software that supported web access. The case study evaluation provided evidence of impact on a small number of students, with the hope of convincing government authorities of the utility of ICT/AT for education on a larger scale.

In a second effort, SEN adult learners in four Central American countries were provided with both AT software and hardware that was designed to foster employment skills (see Box 5.5). As may be seen, a variety of tools were deployed, and a group of several hundred individuals were evaluated and trained.

There is little doubt that the notion of inclusive education is taking hold across the world, both as national and international policy, and this is a priority central to the MDGs. OECD countries have moved strongly in recent years to AT and software that can assist those with special needs. Although assistance and evaluation has been undertaken on the ways in which speech-recognition systems can be used and customized to meet the particular needs of individuals.

BOX 5.3. United Kingdom: Assistive technologies in education

Assistive Technology (AT) is the software and technology which helps people with disabilities and special needs to overcome the additional challenges they have in communication and learning. For example, speech-recognition software, voice control and voice augmentation and develop positive relationships with peers and teachers. … Evaluation into the use of assistive technology is limited and often lacks detailed and comprehensive criteria for assessing the effectiveness of the devices. … Research indicates how fairly positive outcomes. … Speech-recognition software is of most value to those students who cannot produce handwriting work of sufficient quality or quantity. These systems can have a positive effect on reading and spelling with students showing significant improvement in word recognition, reading comprehension and spelling. However, not all students have expressed positive feelings about using the system and have often reported the task of correcting speech recognition errors to be tedious and frustrating. In particular, some primary school students [in the U.K.] have been unable to use such systems because the software has failed to recognize their high-pitched voice or unclear speech. … Most of the research validating speech recognition systems has concentrated on the reliability and robustness of the systems for general use. … Much less evaluation has been undertaken on the ways in which speech recognition systems can be used and customized to meet the particular needs of individuals.

Adapted from Becta. 12

12 Becta, 2003, page 3

5.4 SPECIAL EDUCATIONAL NEEDS

New technologies have long been seen in industrialized countries as an exceptional way to reach out to individuals who are especially challenged with physical and psychological handicaps. Indeed, when resources can be deployed, new ICTs can be seen in a host of efforts to aid those with sight, hearing, and other physiological handicaps. Thus, “special educational needs” (SEN; a subset of the broader domain of special needs) usually refers to the sub-domain of ICT4E where two inter-related issues may arise: (1) Does the SEN learner have particular problems (such as visual or hearing impairments, or learning disabilities, and so on) that make the ordinary person–technology device (PC, PDA, other) interaction difficult (e.g., difficulty in seeing print on a screen)? (2) are there particular technology devices (assistive technologies) that are or can be especially tailored for SEN learners such that they are responsive to the particular needs of the learner (e.g., voice recognition technologies for the blind). While there is a long history of use of such assistive technologies for learning, mainly in industrialized countries (such as described in Box 6.3), due to resource constraints, this area has only begun to receive significant attention in developing countries.

In recent years, AT has been used increasingly in developing countries as well. Popular tools such as JAWS, a screen-reader software for the blind or visually impaired offers access to a wide variety of information, education and job-related applications (see http://www.synapseedaptive.com/). Two case examples are provided below that provide a sense of the types of AT in use, and the type of M&E that has been employed. In the first example, in Morocco (Box 5.4), visually impaired university students were provided with AT software that supported web access. The case study evaluation provided evidence of impact on a small number of students, with the hope of convincing government authorities of the utility of ICT/AT for education on a larger scale.

In a second effort, SEN adult learners in four Central American countries were provided with both AT software and hardware that was designed to foster employment skills (see Box 5.5). As may be seen, a variety of tools were deployed, and a group of several hundred individuals were evaluated and trained.

There is little doubt that the notion of inclusive education is taking hold across the world, both as national and international policy, and this is a priority central to the MDGs. OECD countries have moved strongly...
While technological tools in LDCs are only beginning to be utilized, they nonetheless hold out hope for the millions in poor countries that are in need of additional ways to be included into the age of global education and information.

Refer to the original source for specific references and further details.
5.5 CONCLUSIONS: TOWARDS A PRO-EQUITY USE OF M&E

Many of the current ICT for education efforts, even if deemed to have been successful, have not included a sufficiently pro-equity perspective. This is obvious for various reasons. Earlier, we asked, rhetorically, "Whose divide is really being bridged?" But, we may also simply observe the following: The vast majority of software/ web content (mainly in major languages such as English, Chinese, French, Spanish) is of little use to the many millions of marginalized people for reasons of literacy, language, or culture. Of course, the private sector produces, in large part, for the largest potential and most lucrative market—with clear (and negative) consequences for the poor in most circumstances. It is increasingly clear that user-friendly multimedia tools and content is one important way to help initiate a positive spiral of sustainable development. Indeed, if the private sector can learn to market to the poor (much as soap manufacturers have discovered that smaller soap bars can be sold to a much larger segment of the poor in India), then real markets need to be found that support pro-equity approaches of investment.

How can M&E help this situation? A pro-equity approach to M&E could accomplish two goals: First, M&E specialists should engage in data collection with transparency as to who comprises the population target, and where this population fits into the national fabric and policy of poverty reduction. For example, what is the demographic breakdown of the intervention sample by gender, language, ethnicity, age, location, and income relative to the rest of the national population? Second, it is important to draw from M&E activities any conclusions about both policy formation and program implementation that can address pro-equity issues. For example, in the BFI-India project (Box 5.1, above), evaluation results should be prepared in a manner that allows expansion of the program to additional marginalized groups (by caste, location and other language groups).

BOX 5.6 Colombia: Pro-Gender Approach to Monitoring and Evaluation

Bosa [a locality in Colombia] has a telecenter located in a lower class neighborhood where the majority of people are plain workers and housekeeping as their main interests and activities. Representatives of, Virtuous Mothers, Eco-Mujer, and Women's Centre took part in a Gender and Evaluation Monitoring project in 2003.

[A series of workshops were held, the results of which are provided in the comments below from participants]

Box 5.6 Colombia: Pro-Gender Approach to Monitoring and Evaluation

Bosa [a locality in Colombia] has a telecenter located in a lower class neighborhood where the majority of people are plain workers and housekeeping as their main interests and activities. Representatives of, Virtuous Mothers, Eco-Mujer, and Women's Centre took part in a Gender and Evaluation Monitoring project in 2003.

[A series of workshops were held, the results of which are provided in the comments below from participants]

It is also important to keep in mind the fundamental reality that effective programs, even without rigorous and state-of-the-art M&E methods, can be found and supported. That is, while we advocate strongly here for M&E in all interventions, there are some projects, nonetheless, with little empirical data that we believe (from anecdote and observation) are worth greater investments. One case in point is a women's ICT-based program in Colombia (Box 5.6). Here we see the power of individual women in describing their own situation. Household surveys and the like cannot provide much additional value to what a group of motivated and reflective participants contributed in a set of workshops. Of course, simply becoming aware of the key issues as described in the Colombia example is not the same as knowing whether these issues have been effectively addressed from an evidence-based perspective.

Much can and needs to be done to support pro-equity and pro-MDG approaches to ICT and development—efforts that will benefit and be inclusive to nations and all their citizens. The role of M&E in this domain should not be underestimated. As Margaret Mead famously said: “Never doubt that a small group of thoughtful, committed people can change the world. Indeed, it is the only thing that ever has.” In a parallel fashion, it is only through a small set of credible studies aligned with policy prerogatives (such as the MDGs) that national policy change can take place in a guided fashion. This is the pro-equity challenge, a core component of what this M&E effort should be striving to achieve.

KEY REFERENCES


It is also important to keep in mind the fundamental reality that effective programs, even without rigorous and state-of-the-art M&E methods, can be found and supported. That is, while we advocate strongly here for M&E in all interventions, there are some projects, nonetheless, with little empirical data that we believe (from anecdote and observation) are worth greater investments. One case in point is a women's ICT-based program in Colombia (Box 5.6). Here we see the power of individual women in describing their own situation. Household surveys and the like cannot provide much additional value to what a group of motivated and reflective participants contributed in a set of workshops. Of course, simply becoming aware of the key issues as described in the Colombia example is not the same as knowing whether these issues have been effectively addressed from an evidence-based perspective.

Much can and needs to be done to support pro-equity and pro-MDG approaches to ICT and development—efforts that will benefit and be inclusive to nations and all their citizens. The role of M&E in this domain should not be underestimated. As Margaret Mead famously said: “Never doubt that a small group of thoughtful, committed people can change the world. Indeed, it is the only thing that ever has.” In a parallel fashion, it is only through a small set of credible studies aligned with policy prerogatives (such as the MDGs) that national policy change can take place in a guided fashion. This is the pro-equity challenge, a core component of what this M&E effort should be striving to achieve.

KEY REFERENCES

